KARAKTERISASI FENOTIPIK ISOLAT BAKTERI TOLERAN URANIUM

Authors

  • Henny Muthmainna IAIN Ambon

DOI:

https://doi.org/10.33477/bs.v7i1.389

Abstract

Uranium merupakan unsur radioaktif berbahaya yang bersifat radiotoksik. Meningkatnya penggunaan uranium sebagai bahan bakar pembangkit listrik tenaga nuklir menyebabkan limbah uranium semakin meningkat. Oleh sebab itu diperlukan teknologi remediasi untuk mengolah limbah radioaktif dengan memanfaatkan mikroorganisme. Beberapa bakteri diketahui memiliki potensi untuk berinteraksi dengan uranium melalui transformasi redoks dan biopresipitasi dengan melepaskan fosfat anorganik untuk mengikat uranium dilingkungan. Fosfat anorganik dihasilkan dari degradasi polifosfat yang terakumulasi dalam sel. Penelitian ini bertujuan untuk mengkarakterisasi isolat bakteri potensial pengakumulasi polifosfat yang bersifat toleran terhadap uranium di Indonesia. Karakterisasi dilakukan secara fenotipik yang meliputi identifikasi morfologis, fisiologis, dan biokimiawi. Hasil uji beberapa karakter kunci pada level genus (generic assignment) menunjukkan bahwa seluruh karakter sesuai terhadap genus Acinetobacter. Bentuk sel isolat A671 yang diamati pada fase eksponensial yaitu cocobacil dengan ukuran panjang 1,8 µm dan diameter 1,0 µm, namun pada fase stasioner, bentuk sel berubah menjadi spherical (bulat). Isolat bersifat katalase positif, oksidase negatif, gram negatif, nonmotil, tidak membentuk kapsul dan spora, tidak dapat mengoksidasi 9 jenis sakarida, dan memiliki tingkat toleransi terhadap kadar garam yang tinggi. Kata kunci: Bakteri, Uranium, Karakterisasi Fenotipik

References

Agency for Toxic Substances and Disease Registry. 2013. Toxicological Profil for Uranium. Online di: http://www.atsdr.cdc.gov/toxprofiles.

Badan Tenaga Nuklir Nasional. 2015. Fasilitas Nuklir. Online di:http://www. batan.go.id/index.php/id/kedeputian/fasilitas-nuklir.

Brown, A. dan Smith, H. 2015. Benson’s Microbiological Applications, Laboratory Manual in General microbiology. 13 Ed. McGraw Hill International Ed. New York.

Choudhary, S. and Sar. 2011. Uranium Biomineralization by a Metal Resistant Pseudomonas aeruginosa strain Isolatd from Contaminated Mine Waste. Journal of Hazardous Materials. 186: 336-343.

Ito, H., Sato, T. and Iizuka, H. 1976. Study of The Intermediate Type of Moraxella and Acinetobacter Occurring in Radurized Vienna Sausage. Agr.Biol.Chem. 40 (5): 867-873.

Jutono, J., Soedarsono, Hartadi, S., Kabirun, S., Suhadi, D., dan Soesanto. 1973. Pedoman Praktikum Mikrobiologi Umum. Departemen Mikrobiologi, Fakultas Pertanian. Universitas Gadjah Mada. Yogyakarta.

Li, J. and Zhang, Y. 2012. Remediation Contaminated Environment:Technology for A Review. Procedia The Uranium Environmental Sciences 13: 1609-1615.

Martins, M., Falerio, M.L., Chaves, S., Tenreiro, R., Santos, E., and Costa, M.C. 2010. Anaerobic Bioremoval of Uranium (VI) dan Chromium(VI): Comparison of Microbial Community Structure. Journal of Hazardous Materials 176: 1065 –1072.

Merroun, M.L, Nedelkova, M., Ojeda, J.J., Reitz, T., Fernandez, M.L., Arias, J.M., Romero-Gonzalez, M., and Selenska-Pobel, S. 2011. Bio-precipitation of Uranium by Two Bacterial Isolats Recovered From Extreme Environments as Estimated by Potentiometric titration, TEM and X-ray Absorption Spectroscopic Analyses. Journal of Hazardous Materials 197: 1-10.

Nishimura, Y., Kairiyama, E., Shimadzu, M., and Iizuka, H. 1981. Characterization of a Radiation-Resistant Acinetobacter. Zeitschrift fur Allgemeine mikrobiologie.21: 125-130.

Nishimura, Y., Ino, T. and Iizuka, H. 1988. Acinetobacter radioresistens sp. nov. Isolatd from Cotton and Soil. International Journal of systematic bacteriology.38: p. 209-211.

Renninger, N., Knopp, R., Nitsche, H., Clark, D.S., and Keasling, J.D. 2004. Uranyl Precipitation by Pseudomonas aeruginosa Via Controlled Polyphosphate Metabolism. Applied and Environmental Microbiology 70 (12): 7404-7412.

Shegro, A., Labuschagne, M.T., Van Biljon, A., and Srhargie, N.G. 2013. Assessment of Genetic Diversity in Sorghum accessions using amplified Fragment Length Polymorphism (AFLP) analysis. African Jour. Biotec. 12(11): 1178-1188.

Sidat, M., Bux, F. and Kasan, H.C. 1999. Polyphosphate Accumulation by Bacteria Isolatd From Activated Sludge. Water SA. 25 no. 2

Sneath, D.H.A., Nicholas, S.M., Elisabeth, M., and Holt, J.G. 1987. Bergey’s Manual of Systematics Bacteiology vol.2 Williams and Wilkins.USA.

U.S. Environmental Protection Agency. 2015. Radiation Protection. Online di:http: //www.epa.gov/radiation/radionuclides/uranium.html

Published

2018-05-20