EMBEDDED MAHTEMATICS PADA BUDAYA UKIRAN KHAS TANA TORAJA UNTUK KONTEKS PEMBELAJARAN

Authors

  • Abdillah Abdillah IAIN Ambon

DOI:

https://doi.org/10.33477/hp.v10i2.696

Abstract

Artikel ini membahas identifikasi embedded mahtematics pada budaya ukiran khas Tana Toraja. Identifikasi dilakukan perspektif ethnomat-hematical untuk mengungkap embedded mahtematics pada budaya ukiran khas Tana Toraja agar dapat membantu mengembangkan intelektual, pembelajaran sosial, emosional, dan kreativitas pebelajar sehingga dengan menggunakan referensi budaya pebelajar pada ukiran Tana Toraja yang unik dapat memberikan pengetahuan, keterampilan, dan sikap yang berkarakter pada diri pebelajar. Berbagai konsep matematika telah diidentifikasi dari budaya ukiran khas Tana Toraja. Embedded mahtematics pada budaya ukiran khas Tana Toraja, dan bahwa hal itu dapat digunakan sebagai konteks pembelajaran matematika untuk memromosikan pembelajaran matematika, di mana embedded mahtematics ini berkaitan dengan pengalaman budaya dan keseharian siswa, sehingga dapat membantu siswa dalam memudahkan mereka untuk menjelaskan hubungan yang bermakna dan memerdalam pemahaman mereka tentang matematika. Keyword: Embedded Mathematic pada Budaya Ukiran Khas Tana Toraja.

References

Adams, K M. (1998). more than an ethnic marker: Toraja art as Identity Negotiator. SOURCE: American Ethnologist 25 no3 327-51.

Adams, Kathleen M. (2006). Art as Politics: Recrafting Identities, Tourism and Power in Tana Toraja, Indonesia.

Honolulu: University of Hawaii Press. ISBN 978-0-8248-3072-4. http://pdms.kucing.biz/_b.php?_b=info&id=26212#cite_note-Palmer2006-21

Adam, N. A. (2012). Weaving Mathematics and Culture: Mutual Interrogation as a Methodological Approach. Journal of Mathematics and Culture Volume 6 Number 1 Focus Issue ICEM4.

Ausubel, D. (1978). In defense of advance organizers: A reply to the Critics. Review of Educational Research, 48, 251-257.

Ausubel, D., Novak, J., & Hanesian, H. (1978). Educational Psychology: A Cognitive View (2nd Ed.). New York: Holt, Rinehart & Winston.

Christou, M. (2004). Saddan Toraja Supplementary Weft Weaving An Ethnographic Interpretation of Acculturation and Assimilation of Loom Technology and Weaving Techniques. Textile Society of America Symposium Proceedings.

D’Ambrosio, U. (2001). What is Ethnomathematics and how can it help children in schools? Teaching Children Mathematics, 7(6), 308-310.

D’Ambrosio, U. (2006). Ethnomathematics: Link between traditions and modernity. ZDM, 40(6), 1033-1034

Fisher, J. (2006). Enriching Students’ Learning Through Ethnomathematics in Kuruti Elementary Schools in Papua New Guinea. Department of Electrical and Communication Engineering. PNG University of Technology. Papua New Guinea. (https://www.math.auckland.ac.nz/Events/2006/ICEM-3/3.Prez%20Not%20Given/Prez%20not%20given%20papers/Fisher-paper.pdf)

Harliati. (2012). Toraja sebagaimana yang terlukis dalam Landorundun Karya Rampa’ Maega: sebuah Tinjauan Sosiologis. Skripsi. Depok: Fakultas Ilmu Pengatahuan Budaya Universitas Indonesia.

Larson, C. (2007). Master of Arts in Teaching (MAT) Masters Exam. In partial fulfilment of the requirements for the Master of Arts in Teaching with a specialization in the teaching of middle level mathematics in Department of Mathematics. Gordon Woodward, Advisor.

Lucena, I. C. R. (2004). Etnomatemática e práticas sociais [Ethnomathematics and social practices]. Coleção Introdução à Etnomatemática [Introduction to Ethnomathematics Collection]. Natal, RN, Brazil: UFRN.

Mascarenhas, A. (2004). Knowledge, Indigenous Knowledge, Peace and Development. Indilinga: African Journal of Indigenous Knowledge Systems, 3:1 -15.

Massarwe, K, dkk. (2010). An Ethnomathematics Exercise in Analyzing and Constructing Ornaments in a Geometry Class. Journal of Mathematics & Culture. February 2010 5 (1) ISSN –1558-5336

Nkopodi, N & Mosimege, M. (2009). Incorporating the indigenous game of Morabaraba in the learning of mathmatics. South African Journal of Education. EASA. Vol 29:377-392.

Orey, D. C. (2000). The ethnomathematics of the Sioux tipi and cone. In H. Selin (Ed.), Mathematics across culture: the History of non-Western mathematics (pp.239-252). Dordrecht, Netherlands: Kulwer Academic Publishers.

Palmer, M. A. (2006). "The Kira-kira method of the Torajan woodcarvers of Sulawesi to divide a segment into equal parts" (doc). Third International Conference on Ethnomathematics: Cultural Connections and Mathematical Manipulations, Auckland, New Zealand: University of Auckland.

Rosa, M., & Orey, D. C. (2007). Cultural assertions and Challenges Towards Pedagogical Action of an EthnomatheMatics Program. For the Learning of Mathematics, 27(1), 10-16.

Rosa, M., & Orey, D. C. (2008). Ethnomathematics and Cultural Representations: Teaching in highly diverse contexts. Acta Scientiae - ULBRA, 10, 27-46

Rosa, M. & Orey, D.C. (2011). Ethnomathematics: the Cultural Aspects of mathematics. Revista Latinoamericana de Etnomatemática, 4(2). 32-54

Torres-Velasquez, D., & Lobo, G. (2004).

Culturally Responsive Mathematics Teaching And English Language Learners. Teaching Children Mathematics, 11, 249-255.

Totanan, C. (2012). Debt and Credit Principle in Culture Toraja Ethnic ‚Rambu Solo’‛: A New Perspective Non Contractual. IOSR Journal of Business and Management (IOSR-JBM) ISSN: 2278-487X. Volume 4, Issue 3. PP. 26-31.

Downloads

Published

2019-01-09