Representasi Siswa Sekolah Dasar dalam Pemahaman Konsep Pecahan

Authors

  • Ajeng Gelora Mastuti Jurusan Pendidikan Matematika IAIN Ambon

DOI:

https://doi.org/10.33477/mp.v5i2.234

Abstract

Representasi terjadi melalui dua tahapan, yaitu representasi internal dan representasi eksternal. Berpikir tentang ide matematika yang memungkinkan pikiran seseorang bekerja atas dasar ide tersebut merupakan representasi internal. Representasi internal dari seseorang sulit untuk diamati secara langsung karena merupakan aktivitas mental dari seseorang dalam pikirannya (minds-on). Tetapi representasi internal seseorang itu dapat disimpulkan atau diduga berdasarkan representasi eksternalnya dalam berbagai kondisi, misalnya dari pengungkapannya melalui kata-kata (lisan), melalui tulisan berupa simbol, gambar, grafik, tabel ataupun melalui alat peraga (hand-on). Dengan kata lain terjadi hubungan timbal balik antara representasi internal dan eksternal dari seseorang ketika berhadapan dengan sesuatu masalah. Artikel ini merupakan hasil penelitian yang dilaksanakan di SD Islam Surya Buana. Pada hasil penelitian di SD Islam Surya Buana, representasi yang digunakan adalah representasi Bruner yang meliputi enaktif (enactive), ikonik (iconic) dan simbolik (symbolic), dimana masing-masing tahapan akan disajikan dua model representasi pecahan dengan konsep bagian dari keseluruhan (part-two-whole concept) dan model bagian suatu himpunan yang bagian-bagiannya kongruen (part-group, congruent parts). Kata Kunci: abstraksi, representasi, dan pecahan

Author Biography

Ajeng Gelora Mastuti, Jurusan Pendidikan Matematika IAIN Ambon

matematika

References

Bennet, A.B. & L.T. Nelson. 2004. Mathematics for Elementary Teacher. Edisi Keenam. New York: McGraw Hill.

Clarke, D. J., & Xu, L. H. (2007). Examining Asian mathematics classrooms through the lens of the distribution of responsibility for knowledge generation. Proceedings of EARCOME4 (the 4th East-Asian Research Conference on Mathematics Education, pp. 518-524), June 18-22, 2007. Penang: University of Malaysia.

Clarke, D. J., Mesiti, C., O’Keefe, C., Xu, L. H., Jablonka, E., Mok, I. A. C., & Shimizu, Y. (2007). Addressing the challenge of legitimate international comparisons of classroom practice. International Journal of Educational Research, 46(5), 280-293. http://dx.doi.org/10.1016/j.ijer.2007.10.009

Creswell, J. W. 2013. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. 3rd Edition. Los Angeles: Sage Publications, Inc.

Goldin, G., & Shteingold, N. 2008. Systems of representations and the development of mathematical concepts. In A. Cuoco & S. R. Curcio (Eds.), The roles of representation in school mathematics (hal. 1-23). Reston: The National Council of Teachers of Mathematics.

Gray, E. & Tall, D. 2007. Abstraction as a Natural Process of Mental Compression. Mathematicx Education Research Journal. Vol. 19, No.2, 23-40

Hudojo, Herman. 2005. Kapita selekta Pembelajaran Matematika. Malang: IMSTEP.

Hudojo, Herman. 1988. Mengajar Belajar Matematika, Jakarta: Direktorat Pendidikan dan Kebudayaan.

Hwang, dkk. 2009. Multiple Representation Skills and Creativity Effects on Mathematical Problem Solving using a Multimedia Whiteboard System. (www.ifets.info/journals/10_2/17.pdf , diakses tanggal 25 Maret 2015)

Izsák, A. 2003. “We Want a Statement That Is Always True”: Criteria for Good Algebraic Representations and the Development of Modelling Knowledge. Journal for Research in Mathematics Education. Volume 34, Number 3, 2003, 191 – 227.

NCTMa. 2009. Representation. (http://nctm.org/rep.html , diakses tanggal 25 Maret 2015).

NCTMb. 2009. Representation—Show Me the Math! (http://www.nctm.org/ about/content.aspx?id=224&blogid=68, diakses tanggal 25 Maret 2015).

Krulik, S. & Rudnick, J. A. 1999. Innovative Tasks To Improve Critical and Creative

Thinking Skills. p.138-145. from Developing Mathematical reasoning in Grades

K-12. 1999 Year book. Stiff, Lee V. Curcio, Frances R. Reston, Virginia: The

National Council of teachers of Mathematics, Inc.

Lamon, S.J. 2001. Presenting and representing: From fractions to rational numbers. In A. Cuoco & F.R. Curcio (Eds.). The roles of representation in shool mathematics (pp. 146-165). Reston: The National Council of Teacher of Mathematics.

Lamon,S.J. 2006. Teaching fractions and rations for understanding, Secondedition. Mahwah, NJ: Lawrence Erlbaum Associates.

Luitel, Bal Chandra. 2009. Representation: Revisited. (http://au.geocities.com/ bcluitel/Representation-revisited)

Mallet, Dan G. 2009. Multiple Representations for Systems of Linear Equations Via the Computer Algebra System Maple. (www.iejme.com/022015 /d2.pdf )

Pantazi, dkk. 2009. Elementary School Students’ Mental Representations 0SSractions. (http://www.emis.de/proceedings/PME28/RR/RR216_ Pitta-Pantazi.pdf , diakses tanggal 26 Maret 2015)

Pitkethly, A., & Hunting, R. (1996). A review of recent research in the area of initial fraction concepts. Educational Studies in Mathematics, 30, 5-38. http://dx.doi.org/10.1007/BF00163751

Pyke, Curtis L. 2003. he Use of Symbols, Words, and Diagrams as Indicators of Mathematical Cognition: A Causal Model. Journal for Research in Mathematics Education. Volume 34, Number 5, 2003, 406 – 432.

Resnick, L.B., & Ford, W.W. 1981. The Psychology of Mathematics for Instruction. Hillsdale: Lawrence Erlbaum Associates.

Skemp, Richard R. 1982. The Psychology of Learning Mathematics. Harmonsworth:

Pinguin Books Ltd.

Soedjadi. 2000. Kiat Pendidikan Matematika di Indonesia. Jakarta: Direktorat Jendral Pendidikan Tinggi Departemen Pendidikan Nasional.

Vale, C. 2007. Using number sense when adding fractions. Prime Number, 22(2), 5-10.

Yusof, J. & Malone, J. 2003. Mathematical Errors in Fractions: A Case of Bruneian Primary 5 Pupils. [online].. Available at: http://www.merga.net.au/documents/RR_yusof.pdf Download 15 Februari 2015.

Downloads

Published

2017-12-31